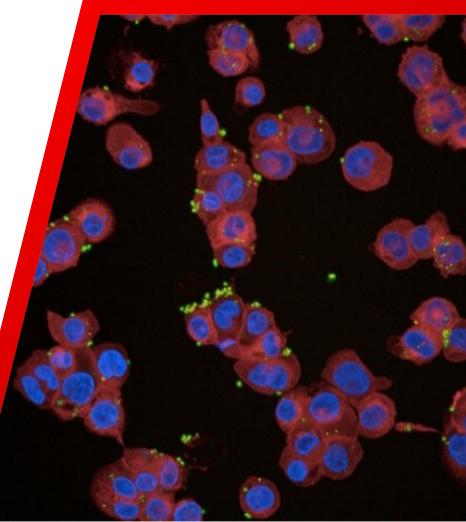


Protein-protein interactions using Deep Learning: application in antibody design

Sara Joubbi, 10 Mar 2023

s.joubbi@toscanalifesciences.org

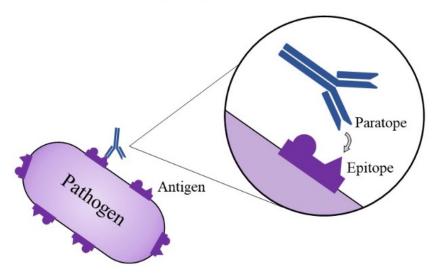
Agenda


- Protein-protein interactions
- Antibody-antigen interactions
- Reverse vaccinology 2.0
- Deep Learning for antibody-antigen interactions
- Applications of deep learning in antibody design
- Problems & Discussion

Introductions of PPI

Protein-protein interactions (PPI) are a fundamental aspect of biological systems

- PPIs are physical interactions between two or more proteins
- PPIs are involved in a wide range of cellular processes (e.g., immune response).
- Dysregulation of PPIs can lead to a range of diseases (e.g., autoimmune disorders)
- Understanding the mechanisms to develop treatments and therapies for these diseases




Antibody-antigen interactions

Antibodies recognize and bind to specific molecules, known as antigens

 Antibodies (Ab) are composed by heavy (H) and light (L) chains.

Antibody/Antigen interaction

 Each chain presents three variable domains containing the antibody's binding surface, or *paratope* (the corresponding antigen part is called *epitope*).

VL

nope

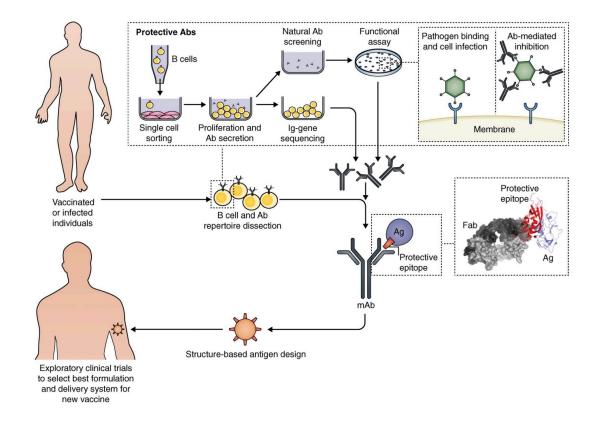
The interaction between an antibody and its specific antigen is highly specific, like a lock with a key

- The binding of an antibody to its antigen is known as an *antibody-antigen interaction*.
- This interaction plays a crucial role in the immune response to infection.

Pathogen

Antigen

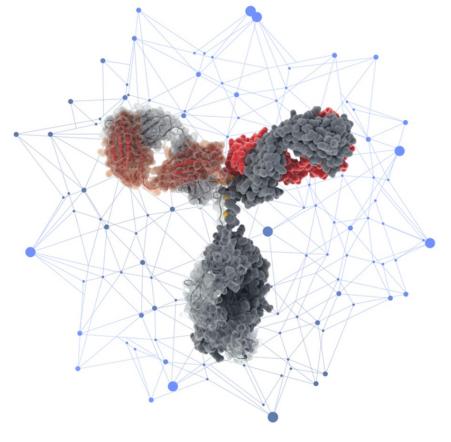
Epitope


VH

Reverse vaccinology 2.0 for vaccines and antibodies development

Potent monoclonal antibodies can be **harnessed** from a human humoral response from individuals exposed to a specific pathogen:

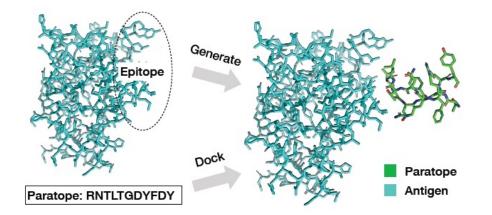
- Beta cells are extracted from individuals
- Functional characterization identifies antigen-specific producing beta cells.
- Identified mAbs are then characterised and optimised

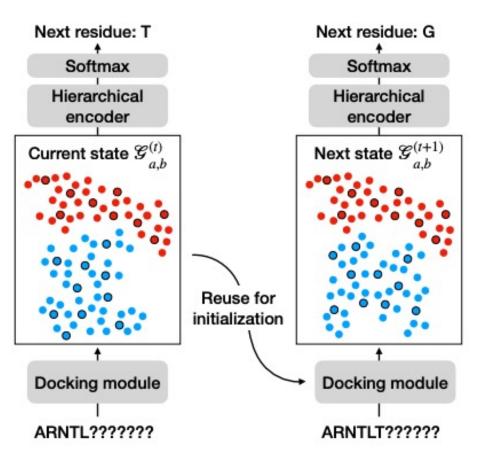


Deep learning has emerged as a powerful tool for predicting and analysing Ab-Ag interactions

- Reverse vaccinology 2.0: time- and resource-intensive, sampling many ineffective antibodies an route to identifying a feasible candidate.
- Classical computational methods: often require a deep understanding of biophysical principles and may not generalize well to different scenarios

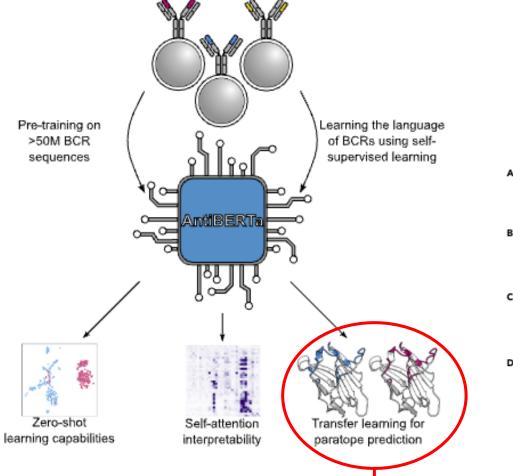
Deep learning is efficient and can handle large datasets, can be used to model complex interactions, predict interaction sites, and identify new interactions




Applications of DL for Ab

- **1. Antibody-antigen docking**: to predict the structure of antibody-antigen complexes
- **2. Epitope prediction**: predict the binding sites that are recognized by antibodies
- **3. Antibody optimization**: optimize the affinity and specificity of antibodies by predicting the effects of mutations on the antibody-antigen complex
- 4. De novo design
- **5. Virtual screening**: screen large libraries of potential antibody candidates for those with the best predicted binding affinity and specificity

Paratope docking and design with Hierarchical Structure Refinement Network (HSRN)



Jin, W., Barzilay, R., & Jaakkola, T. (2022, June). Antibody-antigen docking and design via hierarchical structure refinement. In *International Conference on Machine Learning* (pp. 10217-10227). PMLR.

AntiBERTa for learning the language of Antibodies

Paratope prediction: the probability that a position is part of the paratope of the antibody

A	Framework 1	CDR1	Framework 2	CDF	R2 Frameworl	k 3 CD	R3 Fra	mework 4
	EVQLCAAS	GFTVSSNI	NYMSWWVSV	IYSG	GTTYYAN.	.YCARGDVSG	YRYGLDYWGQO	GTLVTVS
3	Framework 1	CDR1	Framework 2	CDF	R2 Framework	k 3 CD	R3 Fra	mework 4
	EVQLCAASGFTVSSNNYMSWWVSVIYSGGTTYYAN.YCARGDVSGYRYGLDYWGQGT							
:	Framework 1	CDR1	Framework 2	CDR2 Framework 3 CDR3 Framework 4			1	
	SYVLCGGNNIGSKSVHWYQQLVIYYDSDRPSNYCQVWDSSSDHVVFGGGTKLTVL							
	Framework 1	CDR1	Framework 2	CDR2	Framework 3	CDR3	Framework 4	1
	SYVLCGGNNIGSKSVHWYQQLVIYYDSDRPSNYCQVWDSSSDHVVFGGGTKLTVL							
	↑							

Leem, J., Mitchell, L. S., Farmery, J. H., Barton, J., & Galson, J. D. (2022). Deciphering the language of antibodies using self-supervised learning. *Patterns*, *3*(7), 100513.

People that say that AI will take over the world:

My own Al:

Reality check...

- 1. Data scarcity
- 2. Transferability
- 3. Complex nature of the interaction
- 4. Integration with experimental workflows

DaScH Lab @ TLS

Thanks for your attention

